Publications2019-02-01T12:21:02+00:00

Pubmed: Wilbrecht L

Rule learning enhances structural plasticity of long range axons in frontal cortex

Rules encompass cue-action-outcome associations used to guide decisions and strategies in a specific context. Subregions of the frontal cortex including the orbitofrontal cortex (OFC) and dorsomedial prefrontal cortex (dmPFC) are implicated in rule learning, although changes in structural connectivity underlying rule learning are poorly understood. We imaged OFC axonal projections to dmPFC during training in a multiple choice foraging task and used a reinforcement learning model to quantify explore–exploit strategy use and prediction error magnitude. Here we show that rule training, but not experience of reward alone, enhances OFC bouton plasticity. Baseline bouton density and gains during training correlate with rule […]

February 3rd, 2016|Tags: , , , |

Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia

The basal ganglia (BG) are critical for adaptive motor control, but the circuit principles underlying their pathway-specific modulation of target regions are not well understood. Here, we dissect the mechanisms underlying BG direct and indirect pathway-mediated control of the mesencephalic locomotor region (MLR), a brainstem target of BG that is critical for locomotion. We optogenetically dissect the locomotor function of the three neurochemically distinct cell types within the MLR: glutamatergic, GABAergic, and cholinergic neurons. We find that the glutamatergic subpopulation encodes locomotor state and speed, is necessary and sufficient for locomotion, and is selectively innervated by BG. We further show activation and […]

Early maternal separation impacts cognitive flexibility at the age of first independence in mice

Early life adversity is associated with increased risk for mental and physical health problems, including substance abuse. Changes in neural development caused by early life insults could cause or complicate these conditions. Maternal separation (MS) is a model of early adversity for rodents. Clear effects of MS have been shown on behavioral flexibility in rats, but studies of effects of MS on cognition in mice have been mixed. We hypothesized that previous studies focused on adult mice may have overlooked a developmental transition point when juvenile mice exhibit greater flexibility in reversal learning. Here, using a 4-choice reversal learning task we […]

November 1st, 2015|Tags: , , , |

The BDNF Val68 to Met Polymorphism Increases Compulsive Alcohol Drinking In Mice Which Is Reversed By TrkB Activation

Background

The Val66 to Met polymorphism within the brain-derived neurotrophic factor (BDNF) sequence reduces activity-dependent BDNF release, and is associated with psychiatric disorders in humans. Alcoholism is one of the most prevalent psychiatric diseases. Here, we tested the hypothesis that this polymorphism increases the severity of alcohol abuse disorders.

Methods

We generated transgenic mice carrying the mouse homolog of the human Met66BDNF allele (Met68BDNF), and used alcohol-drinking paradigms in combination with viral-mediated gene delivery and pharmacology.

Results

We found that Met68BDNF mice consumed excessive amounts of alcohol and continued to drink despite negative consequences, a hallmark […]

Brief cognitive training interventions in young adulthood promote long-term resilience to drug-seeking behavior

Environmental stress and deprivation increase vulnerability to substance use disorders in humans and promote drug-seeking behavior in animal models. In contrast, experiences of mastery and stability may shape neural circuitry in ways that build resilience to future challenges. Cognitive training offers a potential intervention for reducing vulnerability in the face of environmental stress or deprivation. Here, we test the hypothesis that brief cognitive training can promote long-term resilience to one measure of drug-seeking behavior, cocaine conditioned place preference (CPP), in mice. In young adulthood, mice underwent cognitive training, received rewards while exploring a training arena (i.e. yoked control), or remained in […]

May 28th, 2015|Tags: , , |

Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent

The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSCs) in Layer 5 cell-types in the mouse anterior cingulate (Cg) across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral Cg and ipsilateral pons. […]

Review: Between the Primate and “Reptilian” Brain: Rodent Models Demonstrate the Role of the Corticostriatal Circuits in Decision Making

Decision making can be defined as the flexible integration and transformation of information from the external world into action. Recently, the development of novel genetic tools and new behavioral paradigms has made it attractive to study behavior of all kinds in rodents. By some perspectives, rodents are not an acceptable model for the study of decision making due to their simpler behavior often attributed to their less extensive cortical development when compared to non-human primates. We argue that decision making can be approached with a common framework across species. We review insights from comparative anatomy that suggest the expansion of cortical-striatal […]

January 31st, 2015|Tags: , , , |

Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion

Sensory processing is dependent upon behavioral state. In mice, locomotion is accompanied by changes in cortical state and enhanced visual re- sponses. Although recent studies have begun to elucidate intrinsic cortical mechanisms underlying this effect, the neural circuits that initially couple locomotion to cortical processing are unknown. The mesencephalic locomotor region (MLR) has been shown to be capable of initiating running and is associated with the ascending reticular activating system. Here, we find that optogenetic stimulation of the MLR in awake, head-fixed mice can induce both locomotion and increases […]

Cocaine-induced structural plasticity in frontal cortex correlates with conditioned place preference

Contextual cues associated with previous drug exposure can trigger drug craving and seeking, and form a substantial obstacle in substance use recovery. Using in vivo imaging in mice, we found that cocaine administration induced a rapid increase in the formation and accumulation of new dendritic spines, and that measures of new persistent spine gain correlated with cocaine conditioned place preference. Our data suggest that new persistent spine formation in the frontal cortex may be involved in stimulant-related learning driving appetitive behavior.

Francisco Javier Muñoz-Cuevas, Jegath Athilingam, Denise Piscopo, Linda Wilbrecht, Cocaine-induced structural plasticity in frontal cortex correlates with conditioned place preference, […]

Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value

In changing environments, animals must adaptively select actions to achieve their goals. In tasks involving goal-directed action selection, striatal neural activity has been shown to represent the value of competing actions. Striatal representations of action value could potentially bias responses toward actions of higher value. However, no study to date has demonstrated the direct effect of distinct striatal pathways in goal-directed action selection. We found that transient optogenetic stimulation of dorsal striatal dopamine D1 and D2 receptor–expressing neurons during decision-making in mice introduced opposing biases in the distribution of choices. The effect of stimulation on choice was dependent on recent reward […]

August 19th, 2012|Tags: , , , , |