Modeling changes in probabilistic reinforcement learning during adolescence

In the real world, many relationships between events are uncertain and probabilistic. Uncertainty is also likely to be a more common feature of daily experience for youth because they have less experience to draw from than adults. Some studies suggest probabilistic learning may be inefficient in youths compared to adults, while others suggest it may be more efficient in youths in mid adolescence. Here we used a probabilistic reinforcement learning task to test how youth age 8-17 (N = 187) and adults age 18-30 (N = 110) learn about stable probabilistic contingencies. Performance increased with age through early-twenties, then stabilized. Using hierarchical Bayesian methods to fit computational reinforcement learning models, we show that all participants’ performance was better explained by models in which negative outcomes had minimal to no impact on learning. The performance increase over age was driven by 1) an increase in learning rate (i.e. decrease in integration time scale); 2) a decrease in noisy/exploratory choices. In mid-adolescence age 13-15, salivary testosterone and learning rate were positively related. We discuss our findings in the context of other studies and hypotheses about adolescent brain development.

Liyu Xia, Sarah L. Master, Maria K. Eckstein, Beth Baribault, Ronald E. Dahl, Linda Wilbrecht, Anne Gabrielle Eva Collins, Modeling changes in probabilistic reinforcement learning during adolescence, July 2021, https://doi.org/10.1371/journal.pcbi.1008524

Modeling changes in probabilistic reinforcement learning during adolescence2021-07-02T19:48:38+00:00

Learning Rates Are Not All the Same: The Interpretation of Computational Model Parameters Depends on the Context

Reinforcement Learning (RL) has revolutionized the cognitive and brain sciences, explaining behavior from simple conditioning to problem solving, across the life span, and anchored in brain function. However, discrepancies in results are increasingly apparent between studies, particularly in the developmental literature. To better understand these, we investigated to which extent parameters generalize between tasks and models, and capture specific and uniquely interpretable (neuro)cognitive processes. 291 participants aged 8-30 years completed three learning tasks in a single session, and were fitted using state-of-the-art RL models. RL decision noise/exploration parameters generalized well between tasks, decreasing between ages 8-17. Learning rates for negative feedback did not generalize, and learning rates for positive feedback showed intermediate generalizability, dependent on task similarity. These findings can explain discrepancies in the existing literature. Future research therefore needs to carefully consider task characteristics when relating findings across studies, and develop strategies to computationally model how context impacts behavior.

Maria K Eckstein, Sarah L Master, Liyu Xia, Ronald E Dahl, Linda Wilbrecht, Anne Gabrielle Eva Collins, Learning Rates Are Not All the Same: The Interpretation of Computational Model Parameters Depends on the Context (May 2021), https://www.biorxiv.org/content/10.1101/2021.05.28.446162v1
doi: https://doi.org/10.1101/2021.05.28.446162

Learning Rates Are Not All the Same: The Interpretation of Computational Model Parameters Depends on the Context2021-06-02T16:28:08+00:00