Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex?

Postnatal brain development is studded with sensitive periods during which experience dependent plasticity is enhanced. This enables rapid learning from environmental inputs and reorganization of cortical circuits that matches behavior with environmental contingencies. Significant headway has been achieved in characterizing and understanding sensitive period biology in primary sensory cortices, but relatively little is known about sensitive period biology in associative neocortex. One possible mediator is the onset of puberty, which marks the transition to adolescence, when animals shift their behavior toward gaining independence and exploring their social world. Puberty onset correlates with reduced behavioral plasticity in some domains and enhanced plasticity in others, and therefore may drive the transition from juvenile to adolescent brain function. Pubertal onset is also occurring earlier in developed nations, particularly in unserved populations, and earlier puberty is associated with vulnerability for substance use, depression and anxiety. In the present article we review the evidence that supports a causal role for puberty in developmental changes in the function and neurobiology of the associative neocortex. We also propose a model for how pubertal hormones may regulate sensitive period plasticity in associative neocortex. We conclude that the evidence suggests puberty onset may play a causal role in some aspects of associative neocortical development, but that further research that manipulates puberty and measures gonadal hormones is required. We argue that further work of this kind is urgently needed to determine how earlier puberty may negatively impact human health and learning potential.

David J. Piekarski, Carolyn Johnson, Josiah R. Boivin, A. Wren Thomas, Wan Chen Lin, Kristen Delevich, Ezequiel Galarce and Linda Wilbrecht, Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex?, Brain Research, http://dx.doi.org/10.1016/j.brainres.2016.08.042

Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex?2016-09-03T06:57:13+00:00

Long-range orbitofrontal and amygdala axons show divergent patterns of maturation in the frontal cortex across adolescence

The adolescent transition from juvenile to adult is marked by anatomical and functional remodeling of brain networks. Currently, the cellular and synaptic level changes underlying the adolescent transition are only coarsely understood. Here, we use two-photon imaging to make time-lapse observations of long-range axons that innervate the frontal cortex in the living brain. We labeled cells in the orbitofrontal cortex (OFC) and basolateral amygdala (BLA) and imaged their axonal afferents to the dorsomedial prefrontal cortex (dmPFC). We also imaged the apical dendrites of dmPFC pyramidal neurons. Images were taken daily in separate cohorts of juvenile (P24–P28) and young adult mice (P64–P68), ages where we have previously discovered differences in dmPFC dependent decision-making. Dendritic spines were pruned across this peri-adolescent period, while BLA and OFC afferents followed alternate developmental trajectories. OFC boutons showed no decrease in density, but did show a decrease in daily bouton gain and loss with age. BLA axons showed an increase in both bouton density and daily bouton gain at the later age, suggesting a delayed window of enhanced plasticity. Our findings reveal projection specific maturation of synaptic structures within a single frontal region and suggest that stabilization is a more general characteristic of maturation than pruning.

Johnson CM, Loucks A, Peckler H, Thomas AW, Janak P, Wilbrecht L. (in press) Long-range orbitofrontal and amygdala axons show divergent patterns of maturation in the frontal cortex across adolescence. Developmental Cognitive Neuroscience (2016)

Long-range orbitofrontal and amygdala axons show divergent patterns of maturation in the frontal cortex across adolescence2016-02-03T06:01:29+00:00

Rule learning enhances structural plasticity of long range axons in frontal cortex

Rules encompass cue-action-outcome associations used to guide decisions and strategies in a specific context. Subregions of the frontal cortex including the orbitofrontal cortex (OFC) and dorsomedial prefrontal cortex (dmPFC) are implicated in rule learning, although changes in structural connectivity underlying rule learning are poorly understood. We imaged OFC axonal projections to dmPFC during training in a multiple choice foraging task and used a reinforcement learning model to quantify explore–exploit strategy use and prediction error magnitude. Here we show that rule training, but not experience of reward alone, enhances OFC bouton plasticity. Baseline bouton density and gains during training correlate with rule exploitation, while bouton loss correlates with exploration and scales with the magnitude of experienced prediction errors. We conclude that rule learning sculpts frontal cortex interconnectivity and adjusts a thermostat for the explore–exploit balance.

Johnson C, Peckler H,Tai LH, Wilbrecht L., Rule learning enhances structural plasticity of long range axons in frontal cortex. Nature Communications (2016)

Rule learning enhances structural plasticity of long range axons in frontal cortex

Rule learning enhances structural plasticity of long range axons in frontal cortex2016-02-03T05:59:56+00:00

Juvenile mice show greater flexibility in multiple choice reversal learning than adults

We hypothesized that decision-making strategies in juvenile animals, rather than being immature, are optimized to navigate the uncertainty and instability likely to be encountered in the environment at the time of the animal’s transition to independence. We tested juvenile and young adult mice on discrimination and reversal of a 4-choice and 2-choice odor-based foraging task. Juvenile mice (P26–27) learned a 4-choice discrimination and reversal faster than adults (P60–70), making fewer perseverative and distraction errors. Juvenile mice had shorter choice latencies and more focused search strategies. In both ages, performance of the task was significantly impaired by a lesion of the dorsomedial frontal cortex. Our data show that the frontal cortex can support highly flexible behavior in juvenile mice at a time coincident with weaning and first independence. The unexpected developmental decline in flexibility of behavior one month later suggests that frontal cortex based executive function may not inevitably become more flexible with age, but rather may be developmentally tuned to optimize exploratory and exploitative behavior for each life stage.

Johnson C and Wilbrecht L. 2011. Juvenile mice show greater flexibility in multiple choice reversal learning than adults. Dev Cogn Neurosci. 2011 Oct;1(4):540-51. doi: 10.1016/j.dcn.2011.05.008 (Full Text)

Juvenile mice show greater flexibility in multiple choice reversal learning than adults2011-10-01T11:35:21+00:00

volume pill review woody pill samurai x male enhancement pills male breast enhancement vids male enhancement pic does gnc sell sex pills penis enlargement pic golden root male enhancement pill primal force supplements male enhancement pill equator white pill with m on one side blue happy pills get pills against my orders kings drugs chipley fl drlyns drug store ed pills max plus male enhancement nitric acid supplements ed penis enhancing pill canada drug pharmacy promo codes niacin flush free supplements for ed magnum male gold enhancement viagra and sleeping pills male extra male enhancements triple green male enhancement safe sex supplement for 80 yr old how does penis enlargement surgery how to grow your penis big without pills rhino mens pills

most potent cbd oil cbd distribution near me buy cbd extract cbd oil for afib fight back cbd cbd oil free of thc does cbd increase serotonin chicago cbd drop ship cbd sydney cbd shuttle bus map cbd and autoimmune cbd raleigh cbd for respiratory metabolic design cbd oil reviews cbd oil germany legal what cbd oil is good for autism cbd coffee reddit cbd oil contents what medications interact with cbd oil cbd 650 twist blinking red cbd ugli butter full spectrum cbd oil reviews green rose cbd oil green gorilla cbd oil for pets what does cbd oil do for a person emerald cbd cannabis oil for rheumatoid arthritis cbd oil for absence seizures

thyroid supplement for weight loss how can i lose weight fast without pills most effective weight loss pills for men diet plans to lose weight for women keto diet pills shark tank free trial weight loss supplements rated diet for a runner to lose weight big name in weight loss pills crossword what diet lose weight fastest bariatric diet to lose weight serc tablets weight loss can you lose weight on a keto diet beginner weight loss diet what are some weight loss pills enzymes shark tank keto weight loss pills keto premium weight loss pills review new weight loss drugs 2020 appetite suppression side effects of pills to lose weight weight loss pills medical review weight loss dietary pills pros and con new life weight loss pills is keto diet pills good for you health food weight loss pills weight loss pills that are safe doctor recommended diet for weight loss weight loss pills with synephrine type of diet for canine weight loss how to take rapid tone weight loss pills