Coming of age in the frontal cortex: The role of puberty in cortical maturation

Across species, adolescence is a period of growing independence that is associated with the maturation of cognitive, social, and affective processing. Reorganization of neural circuits within the frontal cortex is believed to contribute to the emergence of adolescent changes in cognition and behavior. While puberty coincides with adolescence, relatively little is known about which aspects of frontal cortex maturation are driven by pubertal development and gonadal hormones. In this review, we highlight existing work that suggests puberty plays a role in the maturation of specific cell types in the medial prefrontal cortex (mPFC) of rodents, and highlight possible routes by which gonadal hormones influence frontal cortical circuit development.

Kristen Delevich, Madeline Klinger, Nana J.Okada, Linda Wilbrecht, Coming of age in the frontal cortex: The role of puberty in cortical maturation, May 10, 2021, https://www.sciencedirect.com/science/article/pii/S108495212100094X
Coming of age in the frontal cortex: The role of puberty in cortical maturation2021-06-02T16:26:26+00:00

Sex and Pubertal Status Influence Dendritic Spine Density on Frontal Corticostriatal Projection Neurons in Mice

In humans, nonhuman primates, and rodents, the frontal cortices exhibit grey matter thinning and dendritic spine pruning that extends into adolescence. This maturation is believed to support higher cognition but may also confer psychiatric vulnerability during adolescence. Currently, little is known about how specific cell types in the frontal cortex mature or whether puberty plays a role in the maturation of some cell types but not others. Here, we used mice to characterize the spatial topography and adolescent development of cross-corticostriatal (cSTR) neurons that project through the corpus collosum to the dorsomedial striatum. We found that apical spine density on cSTR neurons in the medial prefrontal cortex decreased significantly between late juvenile (P29) and young adult time points (P60), with females exhibiting higher spine density than males at both ages. Adult males castrated prior to puberty onset had higher spine density compared to sham controls. Adult females ovariectomized before puberty onset showed greater variance in spine density measures on cSTR cells compared to controls, but their mean spine density did not significantly differ from sham controls. Our findings reveal that these cSTR neurons, a subtype of the broader class of intratelencephalic-type neurons, exhibit significant sex differences and suggest that spine pruning on cSTR neurons is regulated by puberty in male mice.

Kristen Delevich, Nana J Okada, Ameet Rahane, Zicheng Zhang, Christopher D Hall, Linda Wilbrecht, Sex and Pubertal Status Influence Dendritic Spine Density on Frontal Corticostriatal Projection Neurons in MiceCerebral Cortex, , bhz325, https://doi.org/10.1093/cercor/bhz325 (preprint available at https://www.biorxiv.org/content/biorxiv/early/2019/09/30/787408.full.pdf)

Sex and Pubertal Status Influence Dendritic Spine Density on Frontal Corticostriatal Projection Neurons in Mice2020-02-13T03:35:21+00:00